Yael Helfman Cohen · Yoram Reich

Biomimetic Design Method for Innovation and Sustainability

Biomimetic Design Method for Innovation and Sustainability

Biomimetic Design Method for Innovation and Sustainability

Yael Helfman Cohen Tel Aviv University Tel Aviv Israel Yoram Reich Faculty of Engineering Tel Aviv University Tel Aviv Israel

ISBN 978-3-319-33996-2 ISBN 978-3-319-33997-9 (eBook) DOI 10.1007/978-3-319-33997-9

Library of Congress Control Number: 2016938673

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

Preface

Biomimicry is captivating. It evokes and attracts the interest of people around the globe, from various disciplines, ages, and professions. It is made of the right ingredients: colorful images, nature, inspiration, innovation, and success stories. In technology, biomimicry provides us with amazing materials and structures and suggests solutions beyond our regular thinking patterns. It is a promising path to address some of the major sustainability challenges of humanity today. In science, biomimicry is a fascinating area for study. It is still in formation and therefore leaves ample space for creation and contribution. It involves many disciplines that should be integrated wisely and consequently challenges the disciplinary nature of science.

I (Yael) was exposed to biomimicry as a child during the eighties, when I got as a present the fascinating book "Bionics-Nature's patents." At that time, the prevailing term was bionics. The book waited on my shelf for almost 25 years until it became the beginning of my new career, as biomimicry researcher and consultant. As an adult, already experienced engineer, I discovered again the biomimicry field, this time under the name biomimicry, during one of my design projects. At that time, biomimicry was brand new in Israel with zero information in Hebrew. I was captivated by the endless inspiration that nature could provide to technology. Next, I became a cofounder of Biomimicry IL, a not-for-profit organization that spread the biomimicry seeds is the industrial, academic, and educational sectors in Israel. Not much later, I associated with Prof. Yoram Reich, and we began our biomimetic journey: Yoram as a supervisor and myself as a Ph.D. candidate. This book is the result of this journey, and it is mainly based on my doctoral thesis but includes also additional insights from our backgrounds in design theories and biomimicry practice.

When we first approached the field few years ago as scientific researchers and practitioners, we realized that below the appealing magic, there was almost no scaffolding to lean on. It was not clear what knowledge bases could support the conjunction of distant disciplines and what language should be used for this purpose.

vi Preface

Motivated by the appeal of biomimicry, and by the lacuna of practical biomimetic design methods, we aimed to develop a new biomimetic design method. We wanted to promote the scientific understanding of the field on one hand, but to provide useful method for practitioners on the other. It was clear that we first needed to develop the missing scaffolding: some solid knowledge bases and multidisciplinary language. Inspired by the theory of inventive problem solving (TRIZ), based on identification of recurring patterns in various disciplines, we intuitively believed that patterns may be the basic words of the missing language. We went out for our patterns journey and became "patterns hunters," looking for design patterns that emerge from a large number of biological design solutions: structure—function patterns and sustainability patterns. From this moment, the patterns were the missing scaffolding and the new language to sustain the development of the new design method: the structural biomimetic design method. We invite you to join this journey and share with you our enthusiasm and insights.

Scientists in the field of biomimicry will find an extensive literature review about the biomimicry discipline including detailed review of current biomimetic design methods and tools, and a mapping of research gaps and challenges. Scientists in the field of design theories will find a unique documentation of design method formation accompanied with a detailed model for "Designing a design method."

Practitioners will find a comprehensive design algorithm and practical tools to lead biomimetic design processes, including detailed case studies. Practitioners with special interest in sustainable design will find a bioinspired sustainability tool, the ideality tool, which can be integrated within biomimetic design processes or stand-alone as a sustainability tool.

The book could be used in an undergraduate or graduate course on biomimicry, design theory, product design, or sustainability to provide in-depth material on the subject.

Acknowledgements

This book presents the results of research made possible by the interdisciplinary environment at the Porter School of Environmental Studies at Tel Aviv University. The authors also thank the following individuals for their contribution:

The engineering students at the mechanical engineering program who participated in the sustainability experiments.

The M.Sc. students Yoav Miraz and Ziv Nahari for the development of the case studies of the method.

The innovation experts Avi Sheinman and Amos Redlich for their help in assessing the results of the innovation study.

Alon Weiss for his assistance with the ideality tool case study.

Dr. Sara Greenberg for her assistance with TRIZ-based analyses and models.

I thank my parents Jacob and Dorit Helfman for providing me the seeds of curiosity; my husband Eytan for the support, confidences, and patience; and my beloved children, Maya, Gili, Aviv, Daniel, and Eyal for being my source of love and motivation.

I thank the Porter School of Environmental Studies, Tel-Aviv University, for supporting this study and providing an interdisciplinary research climate.

Yael Helfman Cohen

I thank my parents Rina and Yoseph Reich, for the strong roots and lifetime support; my children Clil (Arbol Del Amor) and Shaked (Almond), for carrying my fascination of nature in their names and personality; and my partner Nurit, for creating a nourishing, sustainable environment.

Yoram Reich

Contents

Part I Introduction

1	The Biomimicry Discipline: Boundaries, Definitions, Drivers,				
	Pron	nises and	Limits	3	
	1.1	The Or	rigins of the Biomimicry Discipline	3	
	1.2				
		and Research Scope			
		1.2.1	Criterion 1: Direction of Transfer	4	
		1.2.2	Criterion 2: Knowledge Versus Substances	5	
		1.2.3	Criterion 3: Imitation Versus Inspiration—		
			The Biomimicry Zone	5	
		1.2.4	Book Scope	6	
	1.3	Biomin	netic Development Strands	7	
	1.4	Biomin	nicry Growth	7	
	1.5	Biomin	nicry as an Innovation Engine	7	
		1.5.1	Nature as an Idea Generator	8	
		1.5.2	The Innovation Mechanism of the Biomimetic		
			Design Process	9	
	1.6	Biomin	nicry as a Sustainability Engine	11	
		1.6.1	A Demand for Sustainability Tools	11	
		1.6.2	Learning Sustainability from Nature	12	
		1.6.3	Biomimicry as a Sustainability Tool	13	
	1.7	The Im	perfection of Nature	15	
	1.8	Biomin	nicry—Promises and Obstacles	16	
2	The	Biomimi	cry Design Process: Characteristics, Stages		
			nallenge	19	
	2.1		teristics of the Biomimicry Design Process	19	
		2.1.1	Bidirectional Design Process	19	
		2.1.2	Analogical Based Design Process	20	
		2.1.3	Interdisciplinary and Multidisciplinary Design	_ •	
			Process	20	

X Contents

	2.2	Biomimetic Design Process Stages—From a Problem		
			ogy	21
		2.2.1	Problem Definition (Stages 1 and 2)	22
		2.2.2	Identify the Analogy Source: Search for Biological	
			System (Stage 3)	23
		2.2.3	Abstraction—Abstract Design Solutions (Stage 4)	23
		2.2.4	Transfer the Solution (Stage 5)	24
		2.2.5	Evaluation and Iteration (Stage 6)	25
	2.3		metic Design Process Stages—From Biology	
			Application	26
	2.4	-	napse Design Model Charts	27
	2.5		metic Design Process Stages—Literature Review	28
	2.6	Biomir	metic Design Process—Main Challenge	28
3	Bion	nimetic I	Design Methods—Literature Review	31
	3.1		ing/Retrieval Methods	32
		3.1.1	Consult Biologists	33
		3.1.2	Search Designated Biomimetic Databases	33
		3.1.3	Search General Biological Databases	34
		3.1.4	Searching Methods—Summary	38
	3.2	Abstrac	ction Methods	39
		3.2.1	Abstraction Methods Without Databases	39
		3.2.2	Abstraction Methods Accompanied with	
			Database Tools	41
	3.3	Transfe	er Methods	44
4	Liter	ature R	eview Conclusions and Definition	
•			Target	45
	4.1		ch Gap	45
		4.1.1	Structure-Function Relations	45
		4.1.2	Patterns	46
		4.1.3	System View	46
		4.1.4	•	47
		4.1.5	TRIZ Knowledge Base is not Exhausted	47
		4.1.6	Design Space Analysis by Functions and Means	47
		4.1.7	Sustainability	48
		4.1.8	Transfer	48
		4.1.9	Biomimicry as a Multidisciplinary and	
			Interdisciplinary Design Process	48
		4.1.10	Biomimetic Problem Definition	48
	4.2	Researc	ch Target	49

Contents xi

Part	t II	Research Method				
5	Res	earch Model				
	5.1	Definitions				
		5.1.1 Design Methodology				
		5.1.2 Design Process				
		5.1.3 Design Method				
		5.1.4 Design Tools				
	5.2	Developing a Design Method				
	5.3	Research Model				
		5.3.1 Explanation of Research Modules				
	5.4	Implementation of the Research Model for Biomimetic				
		Design				
6	The	eories, Knowledge Bases and Conceptual Frameworks				
		Support the Analysis of Observations				
	6.1	The Technical Lens Approach for Analyzing Biological				
		Systems				
		6.1.1 Systems				
		6.1.2 Functions				
		6.1.3 TRIZ—Inventive Problem Solving Theory				
	6.2	The Patterns Approach for Analyzing Biological Systems				
		6.2.1 What Are Patterns?				
		6.2.2 Patterns Based Design Method				
		6.2.3 Patterns and Biomimicry				
		6.2.4 Structure-Function Patterns				
Part	t III	Research Methodology, Process and Results				
7	Fur	actional Patterns				
,	7.1	The Analysis Process				
	7.2	Results				
	7.2	Results				
	1.5	7.3.1 Comparing Su-Field Ontology to Selected				
		References				
		7.3.2 Summary				
	~ .					
8		acture-Function Patterns				
	8.1	The Analysis Process				
		8.1.1 Analysis Examples				
	c -	8.1.2 The Analysis Stages				
	8.2	Results—The Complete Viable Model				
		8.2.1 Transmission Unit				
		8.2.2 Engines and Brakes				
		8.2.3 The Complete Viable System Model				
		as an Abstraction Tool				

xii Contents

	8.3	Results	—Sustainability Aspects of Biological Systems	90
	8.4	Results	—Structure-Function Patterns	91
		8.4.1	Engines	92
		8.4.2	Brakes	96
		8.4.3	Statistics and Frequency of Patterns Occurrence	99
		8.4.4	Findstructure Database	100
	8.5	Discuss	sion of Results, Explanations and Implications	100
9	Susta	inability	Patterns	105
	9.1	•	nalysis Process	105
		9.1.1	The Analysis Rationale: On the Relations of Ideality	
			and Sustainability	105
		9.1.2	The Analysis Stages	106
	9.2	Results	—Nature Ideality Strategies	107
	9.3		—Ideality Tool for Sustainable and Biomimetic	
		Design		107
		9.3.1	Ideality as a Tool for Sustainable Design	107
		9.3.2	Ideality as a Tool for Biomimetic Design	115
	9.4	Discuss	sion of Results, Explanations and Implications	115
		9.4.1	The Ideality Strategies Characteristics	115
		9.4.2	Ideality as an Evolution Law	116
		9.4.3	Ideality Strategies Versus Life Principles	116
		9.4.4	Ideality as a DFE Tool: A New Approach	
			for Innovative Design for the Environment	119
		9.4.5	Summary	119
10	The 9	Structur	al Biomimetic Design Method Manual: Process	
10), Tools, Templates and Guidelines	121
	10.1		Process Flow Charts	121
	10.2	_		123
	10.2		Design Path with Function-Means Tree	123
			The Patterns Table	124
		10.2.3	Findstructure Database	125
		10.2.4	System Parts Analysis	128
		10.2.5	The Complete Viable System Model Analysis	129
		10.2.6	List of Potential Fields for Su-Field Analysis	130
		10.2.7	The Ideality Framework for Sustainability	150
		10.2.7	Analysis	131
		10.2.8	The Ideality Patterns Table	132
		10.2.9	Transfer Platform: Analogy Comparison	102
		10,2,7	Components	133
			components	100

Contents xiii

Part IV		Experimentation			
11	Case		iology to an Application	137 138	
	11.1	11.1.1	From Papilionaceae Seed to an Application	138	
		11.1.2	From Lizard Tail Autotomy to an Application	147	
	11.2		Problem to Biology	156	
	11.2	11.2.1	Dynamic Screen Protector	156	
		11.2.2	Parking Space Reducer	164	
12	Lab	and Field	l Experiments	173	
	12.1	Introduc	ction	173	
	12.2	Experim	nent 1: Assessing Innovation Aspects of the Structural		
		Biomim	netic Design Method	175	
		12.2.1	Experiments Rationale	175	
		12.2.2	Innovation Assessment Process	175	
		12.2.3	Innovation Criteria	176	
		12.2.4	Experiment 1(a)—Lab Experiment in Class	178	
		12.2.5	Experiment 1(b)—Lab Experiment as Final		
			Project	181	
		12.2.6	Experiment 1(c)—Field Experiment in Industry	184	
		12.2.7	Summary: Experiment 1—Assessing Innovation		
			Aspects of the Structural Biomimetic Design		
			Method	187	
	12.3	Experin	nent 2: Assessing the Ideality Framework		
		as a Sus	stainability Analysis and Design Method	190	
		12.3.1	Experiment Rational	190	
		12.3.2	Measurers	191	
		12.3.3	Experiment Hypotheses	191	
		12.3.4	Experiment Design	192	
		12.3.5	Measuring Process	193	
		12.3.6	Statistical Analysis—Results	196	
Par	t V	Epilogue			
13	Disci	ussion an	d Summary	205	
	13.1	Major A	Achievement—The Structural Biomimetic Design		
		Method		205	
	13.2	Evaluati	ion of Research Results Compared to Research		
		Objectiv	ves	205	
	13.3	Innovati	ive Aspects of This Research	206	
	13.4		duct Contributions (Added Value)	207	
	13.5	Future I	Research	207	

xiv Contents

Appendix A: Innovation Experiment—Biological System 1	209
Appendix B: Innovation Experiment—Biological System 2	211
Appendix C: Innovation Experiment—Student Form	213
Appendix D: Structural Modeling Template Form	215
Appendix E: Innovation Assessment Criteria Form	219
Appendix F: Sustainability Analysis—Biological System 1	221
Appendix G: Sustainability Analysis—Biological System 2	223
Appendix H: Students Instructions Before Exposure to Sustainability Tools	225
Appendix I: Students Instructions After Exposure to Ideality Tool	227
Appendix J: Students Instructions After Exposure to Life Principles Tool	229
Appendix K: Expert's Analysis by Ideality Tool—Desert Snail	231
Appendix L: Expert's Analysis by Ideality Tool—Salvinia Fern	233
Appendix M: Expert's Analysis by Life Principles Tool—Desert Snail	235
Appendix N: Expert's Analysis by Life Principles Tool—Salvinia Fern	237
Appendix O: Sustainability Analysis Students Questionnaire (After Stage 2)	239
Appendix P: Sustainability Analysis Students Questionnaire (After Stage 4)	241
References	243
Index	253