NSWG webinar: SUPERball: A Biologically Inspired Robot for Planetary Exploration (12:00 CDT)

Start: 
Fri, 2016/09/16
Location: 
Webminar

2016/09/13 Added meeting login details

Exploration and Innovation both require bold leaps into the unknown, beyond the boundaries of current knowledge and experience.  Exploring the unknown frontiers of space requires resilient and adaptable robots capable of surviving the unexpected, qualities which humans excel at.  Moving beyond the traditional designs for rigidly constructed fragile robots, Vytas draws inspiration from the flexible tensile network of muscle and tendons of our bodies to develop a new class of "Dynamic Tensegrity Robots."

His current project, SUPERball, is intended to survive high speed landings without an airbag, and thus enable exploration of treacherous terrains where slipping and falling is an unavoidable possibility.  These new robots break the rules of traditional robotics engineering, requiring innovation at all levels of mechanical design, actuation, sensing, and control strategies. 

Modern neuroscience provides insights into how decentralized rhythmic controllers can enable self-organizing control strategies for this new class of biologically inspired robot and provides insight into our core human qualities of thought, motion, inspiration, and our essential ability to see connections between people and ideas which is at the heart of innovation.

JOIN WEBEX MEETING
https://incose.webex.com/join/webex18
Meeting Number: 252 846 155

JOIN BY PHONE
1-1-866-398-2885 Call-in toll-free number (Premiere)
Audio Passcode: 412 867 1535

Show global numbers:
https://www.myrcplus.com/cnums.asp?bwebid=8369444&ppc=4128671535&num=11-866-398-2885&num2=1

Vytas SunSpiral, Stinger Ghaffarian Technologies, Inc.   
Principal Investigator, Dynamic Tensegrity Robotics Lab,
NASA Ames Research Center.

Vytas SunSpiral is an entrepreneurial researcher moving fluidly between leading startups and building research labs to explore cutting edge robotic and AI technologies.  He is a Fellow of the NASA Innovative Advanced Concepts (NIAC) program, and currently leads the Dynamic Tensegrity Robotics Lab (DTRL) within the Intelligent Robotics Group at NASA Ames Research Center.

His research spans a multi-disciplinary fusion of robotics, physiology, AI, mechatronics, and neuroscience, with the goal of understanding human intelligence via the foundational role that motion plays in our evolution.  This quest led to a fundamental new approach to robotics which has the potential to reinvent how we explore the solar system. 

He is an author of ~50 journal and conference articles and was a contributing author of the 2013 Roadmap for US Robotics.  Over the last 20 years he has also been the Founder, CTO, and Advisor to multiple startups, including Mobot which sold the world’s first commercially available autonomous tour guide robots. 

Vytas holds a Masters in Computer Science and an BA in Symbolic Systems from Stanford University.

0
Your rating: None
randomness